
Nonlinear Programming Strategies on
High-Performance Computers
Jia Kang, Naiyuan Chiang, Carl D. Laird, and Victor M. Zavala

Abstract—We discuss structured nonlinear programming
problems arising in control applications, and we review software
and hardware capabilities that enable the efficient exploitation
of such structures. We focus on linear algebra parallelization
strategies and discuss how these interact and influence high-
level algorithmic design elements required to enforce global
convergence and deal with negative curvature in a nonconvex
setting.

I. NLP FRAMEWORK AND NOTATION

We consider the general nonlinear programming problem
(NLP) of the form

min f(x) (I.1a)
s.t. c(x) = 0 (λ) (I.1b)

x ≥ 0 (ν) (I.1c)

Here, x ∈ <n are the primal variables, λ ∈ <m are the dual
variables for the equality constraints, and ν ∈ <n+ are the
dual variables for the bounds. The objective function f(x) :
<n → < and constraints c(x) : <n → <m are assumed to
be twice continuously differentiable and are allowed to be
nonconvex (the linear algebra concepts presented also hold
for convex problems). General inequality constraints can be
handled by introducing slack variables.

To solve the NLP (I.1a), we use a primal-dual interior-
point framework. This framework is particularly attractive
because it enables modular implementations of linear algebra
kernels. The barrier subproblem solved in the IP framework
is given by

min ϕµ(x) := f(x)− µ
n∑
j=1

lnx(j)

s.t. c(x) = 0, (λ)

(I.2)

where µ > 0 is the barrier parameter and x(j) denotes the
jth component of vector x. To solve each barrier problem we
apply Newton’s method to the Karush-Kuhn-Tucker system:

∇xϕµ(x) +∇xc(x)λ = 0 (I.3a)
c(x) = 0 (I.3b)

N. Chiang and V. M. Zavala are with the Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, IL 60439, USA.
E-mail: {nychiang, vzavala}@mcs.anl.gov. J. Kang, is a Ph.D. student in
the Department of Chemical Engineering, Texas A&M University, College
Station, TX. Email: jkang@tamu.edu. C. D. Laird is an Associate Professor
in the School of Chemical Engineering, Purdue University, West Lafayette,
IN. Email: carllaird@purdue.edu. Preprint ANL/MCS-P5359-0615.

with the implicit restriction x ≥ 0. This restriction is
typically enforced using a fraction-to-the-boundary rule [39].
We denote the variables at iterate k as (xk, λk). In a line-
search setting [16, 47], the primal search direction dk and
the dual updates λ+k are typically obtained by solving the
augmented system:[

Wk(δw) JTk
Jk −δcIm

] [
dk
λ+k

]
= −

[
gk
ck

]
. (I.4)

Here, ck := c(xk), Jk := ∇xc(xk)T , gk := ∇xϕµk ,
Wk(δw) := Hk + Σk + δwIn, Hk := ∇xxL(xk, λk),
L(xk, λk) := ϕµ(xk) + λTk c(xk), and Σk := X−1k Vk with
Vk := diag(νk), and Xk := diag(xk). The term In denotes
an identity matrix of dimension n. We also define the primal
and dual regularization parameters δw, δc ≥ 0 and, to enable
compact notation, we define the augmented matrix

Mk(δw, δc) :=

[
Wk(δw) JTk
Jk −δcIm

]
. (I.5)

In a trust-region setting [9], the primal step is typically
decomposed as dk = nk + tk, where nk is the normal
component satisfying Jknk = −ck and tk is the tangential
component computed from the augmented system,[

Wk(0) JTk
Jk

] [
tk
λ+k

]
= −

[
gk +Wk(0)nk

0

]
. (I.6)

We note that regularization is not added directly in the
augmented matrix as in the line-search setting. The reason
is that regularization is treated implicitly in trust-region
procedures. The structure of the augmented systems in both
settings, however, is the same. Consequently, unless stated
otherwise, we will refer to the more general augmented
system (I.4). Many methods can be considered for the parallel
solution of (I.4) including iterative linear algebra or tailored
decomposition of problem-specific structure; however, the
possibility of nonconvexity may impact the algorithms se-
lected.

A key difference between convex and nonconvex NLPs
is the presence of negative curvature. The presence of
negative curvature indicates that the Newton step dk might
not correspond to a minimum of the associated quadratic
programming problem. In a line-search setting this is an im-
portant issue because the Newton step cannot be guaranteed
to provide a descent direction for the objective function when
the constraint violation is sufficiently small. In particular,
we seek that dTk gk < 0 whenever ck ≈ 0. In a trust-region
setting, on the other hand, we need to guarantee that the

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

step improves the Cauchy step. Consequently, detecting and
handling negative curvature is critical to ensure robustness
of the algorithm.

The presence of negative curvature can be checked by
using a curvature test of the form

pTkWk(δw)pk > 0 (I.7)

for some vector pk. Alternatively, we can check for negative
curvature by monitoring the inertia of the augmented matrix
Mk(δw, δc).

In a trust-region setting, the curvature condition is often
checked by using an iterative preconditioned conjugate gra-
dient (PCG) approach (while computing the step tk from
(I.6)). In this approach the PCG iterates are projected onto
the null-space of the constraint Jacobian using a special
preconditioner. This approach is used in KNITRO [9]. In
a line-search setting, the curvature condition can also be
checked after computing the step by setting pk := dk from
(I.4) using any linear algebra approach as in PIPS-NLP [14].
The motivation for the curvature test (I.7) in the line-search
setting becomes evident when we multiply the first row of
the augmented system (I.4) by dTk . We obtain

−dTk gk = dTkWk(δw)dk − cTk λ+k +
1

δc
(λ+k)Tλ+k , (I.8)

where we use the second row of the augmented system to
note that Jkdk − 1

δc
λ+k = −ck. We can thus see that if the

curvature condition (I.7) holds with pk := dk, we have that
dTk gk < 0 when ck ≈ 0, as desired.

The inertia of a matrix M is defined as the triplet
Inertia(M) := {k+, k−, k0}, where k+, k−, and k0 are the
number of positive, negative, and zero eigenvalues of matrix
M . It is well known that the reduced Hessian ZTWk(δw)Z
with Z satisfying JkZ = 0 is positive definite if and
only if the augmented matrix has an inertia of {n,m, 0}
[23]. In such a case we say that the inertia of Mk(δw, δc)
is correct. This result is of great practical significance
because the inertia of the augmented matrix Mk(δw, δc)
can be recovered from a sparse LBLT factorization (serial
and parallel implementations for this are available in linear
solver implementations such as MA57, Pardiso, MUMPS,
and WSMP). When either the inertia is not correct or the
curvature condition (I.7) does not hold, we must increase the
primal regularization δw and compute an updated Newton
step. This procedure continues until negative curvature is
not present and we can thus guarantee the desired descent
property. We highlight, however, that each regularization
requires the solution of a new augmented system and it is
thus expensive.

We may solve the augmented system and infer the inertia
of the augmented matrix by permuting the matrix into the
block partitioned matrix of the form

PMk(δw, δc)P
T =

[
K0 B
BT K1

]
, (I.9)

where P is a nonsingular permutation matrix. Sylvester’s
law of inertia indicates that Inertia(PMk(δw, δc)P

T) =

Inertia(Mk(δw, δc)). Moreover, Haynsworth’s inertia additiv-
ity formula indicates that

Inertia(Mk(δw, δc))

= Inertia(K0) + Inertia(K1 −BTK−10 B) (I.10a)

= Inertia(K1) + Inertia(K0 −BK−11 BT). (I.10b)

This formula is relevant because it can help us infer inertia
using block permutations of the augmented system. We now
provide some examples of how to do this in a general setting
and in the next section we revisit this topic in a structured
setting.

It is well known that the augmented system can be solved
by using a normal or an augmented Lagrangian approach
[19, 22]. The normal approach solves the following system:(

JkWk(δw)−1JTk + δcIm
)
λ+k = −ck + JkWk(δw)−1gk

(I.11a)

Wk(δw)dk = −gk − JTk λ+k . (I.11b)

We can interpret this as a permutation of the augmented
system followed by a Schur decomposition. From (I.10) we
thus have that

Inertia(Mk(δw, δc))

= Inertia(Wk(δw)) + Inertia(−JkWk(δw)−1JTk − δcIm).
(I.12)

If Wk(δw) is positive definite, the inertia of Mk(δw, δc) is
correct if and only if (JkWk(δw)−1JTk + δcIm) is positive
definite. Consequently, we can verify that we have the correct
inertia for Mk(δw, δc) by first choosing δw such that Wk(δw)
is positive definite (this condition can be checked by using
a PCG procedure or a Cholesky factorization). We then pick
δc such that (JkWk(δw)−1JTk + δcIm) is positive definite
(this can also be checked using PCG or Cholesky). This is
beneficial because we can use existing parallel implementa-
tions for these approaches. The normal approach, however, is
computationally beneficial only when the Hessian is diagonal
or block diagonal and/or when the number of constraints is
small.

The augmented Lagrangian approach solves the following
system:(

Wk(δw) +
1

δc
JTk Jk

)
dk = −gk −

1

δc
JTk ck (I.13a)

−δcλ+k = −ck − Jkdk (I.13b)

Consequently, this approach does not require a factorization
of the Hessian matrix Wk(δw) and thus provides a key
advantage over the normal approach when the number of
constraints is large. We can also interpret this approach as a
permutation of the augmented system followed by a Schur
decomposition. From (I.10) we have that

Inertia(Mk(δw, δc))

= Inertia(−δcIm) + Inertia
(
Wk(δw) +

1

δc
JTk Jk

)
= {0,m, 0}+ Inertia

(
Wk(δw) +

1

δc
JTk Jk

)
. (I.14)

We thus have that Mk(δw, δc) has correct inertia if and only
if the augmented Lagrangian Hessian Wk(δw) + 1

δc
JTk Jk is

positive definite. This condition can be checked by using a
PCG or a Cholesky approach.

Despite the different avenues discussed to infer inertia, in
some applications this information is simply not available.
This situation can occur, for instance, when iterative linear
algebra or general (e.g., LU) dense factorization approaches
are used to solve the augmented system. This is important
because many efficient linear algebra implementations for
parallel architectures use these approaches (such as those
implemented in the MAGMA, PETSc, and Trilinos libraries).
When inertia information is not available, we can resort to
the negative curvature condition (I.7).

II. STRUCTURED OPTIMIZATION

We now present different structures arising in optimal
control applications and discuss strategies for their parallel
solution. Problem structures enable the implementation of
decomposition techniques that can be used to accelerate
solutions, avoid memory limitations, and/or facilitate model
building. Such partitioning can be done externally at the
problem formulation level or internally at the linear alge-
bra level. The trade-offs between the two approaches are
clear: the external approach is less intrusive and easier to
implement but convergence rates and robustness are less
favorable; while the internal approach is more intrusive and
harder to implement but retains favorable convergence rates
and robustness of existing algorithmic NLP frameworks. In
particular, the interior-point framework previously discussed
has superlinear convergence. We focus on the internal de-
composition approach within an interior-point framework but
provide pointers to existing work on external methods in
Section V.

A. Primal Couping

NLPs arising in control applications are often large-scale
but are also highly structured. Consider the following struc-
ture

min f0(x0) +
∑
p∈P

fp(xp, x0) (II.15a)

s.t. c0(x0) = 0 (λ0) (II.15b)
cp(xp, x0) = 0, p ∈ P (λp) (II.15c)

x0 ≥ 0 (ν0) (II.15d)
xp ≥ 0, p ∈ P (νp) (II.15e)

We denote this NLP as a structured problem with primal
coupling. Here, P := {1...P} is a set of partitions with
variables xp ∈ <np , and the interface or coupling vari-
ables are x0 ∈ <n0 . The dual variables are λ0 ∈ <m0

and λp ∈ <mp . This structure arises in stochastic model
predictive control in which the coupling variables are controls
and the partitions correspond to scenarios as discussed in
[10, 29] and in parameter estimation problems as discussed
in [48, 50]. This structure also arises in multi-stage optimal
control formulations where the time horizon is partitioned

into stages and the coupling variables correspond to states at
neighboring nodes. Optimal control problems over networks
can also be reformulated into this form.

The NLP representation (II.15) is convenient from an
analysis standpoint. In an actual implementation, however,
it might be convenient to lift the problem by introducing
coupling variables. This can be done by duplicating the
coupling variables x0 in each partition (we denote this
as x0,p) and by introducing the dummy primal variables
y ∈ <n0 . This gives the following form,

min
∑
p∈P

(f0(x0,p) + fp(xp, x0)) (II.16a)

s.t. c0(x0,p) = 0 (λ0,p) (II.16b)
cp(xp, x0,p) = 0, p ∈ P (λp) (II.16c)

x0,p ≥ 0, p ∈ P (ν0,p) (II.16d)
xp ≥ 0, p ∈ P (νp) (II.16e)
x0,p = y, p ∈ P (λ̄p) (II.16f)

In this formulation we have that the coupling between
partitions and the coupling variables y is linear as opposed
to nonlinear as in (II.15). Consequently, we do not need
to compute derivatives for the coupling part (i.e., we only
need derivatives for the partitions). This is beneficial when
expressing structured problems by using off-the-shelf alge-
braic modeling languages such as AMPL, Pyomo, and JuMP
because each partition can be expressed as an independent
optimization problem [34]. The lifting approach retains the
primal structure of the problem but alters the dual structure.
Consequently, the dual variables of the original problem
(II.15) cannot be easily recovered from those of (II.16). This
relevant in certain applications.

The augmented system of the primal-coupled problem
(II.15) can be permuted to the following block-bordered-
diagonal (BBD) form,

K0 BT1 BT2 . . . BTP
B1 K1

B2 K2

...
. . .

BP KP

∆w0

∆w1

∆w2

...
∆wP

 = −

r0
r1
r2
...
rP

 ,
(II.17)

where ∆w0 = (∆x0,∆λ0), ∆wp = (∆xp,∆λp),

K0 =

[
W0(δw) JT0
J0 −δcIm0

]
, (II.18a)

Kp =

[
Wp(δw) JTp
Jp −δcImp

]
, (II.18b)

BTp =
[
QTp T

T
p

]
, (II.18c)

J0 = ∇x0
c0(x0), Jp = ∇xp

cp(x0, xp), Tp = ∇x0
cp(x0, xp),

W0(δw) = ∇x0,x0L+X−10 V0+δwIn0 , Wp(δw) = ∇xp,xpL+
X−1p Vp+δwInp

, and Qp = ∇x0,xp
L. The augmented system

of the lifted problem (II.16) can also be permuted into the
BBD form (II.17) under an appropriate definition of the
blocks.

The BBD system (II.17) can be solved in parallel by using
a Schur complement decomposition approach. This requires
the solution of the following systems:K0 −

∑
p∈P

BpK
−1
p BTp

∆w0 = −r0 +
∑
p∈P

K−1p Bprp

(II.19a)

Kp∆wp = −rp −BTp ∆w0, p ∈ P.
(II.19b)

Here, S:=K0−
∑
p∈P BpK

−1
p BTp is the Schur complement

matrix. This is a symmetric and indefinite matrix of dimen-
sion n0+m0. From Haynsworth’s formula (I.10) we have

Inertia(Mk(δw, δc))

=
∑
p∈P

Inertia(Kp) + Inertia

K0 −
∑
p∈P

BpK
−1
p BTp

 .

(II.20)

We recall that n = n0 +
∑
p np and m = m0 +

∑
pmp.

Consequently, if we have that Inertia(Kp)={np,mp, 0} for
all p ∈ P then the inertia of Mk(δw, δc) is correct if and only
if Inertia(S) = {n0,m0, 0}. One can obtain the inertia of
the blocks Kp using LBLT factorizations, but obtaining the
inertia of the Schur matrix S using an LBLT factorization
can be inefficient because S is often a dense matrix or
contains dense blocks. When this is the case, one can resort
to the inertia-free curvature condition test (I.7) performed
using the entire primal step dk.

In the special case when m0 = 0 (i.e., no constraints of
the form c0(x0) = 0 are present in the problem) the inertia
of Mk(δw, δc) is correct if and only if S is positive definite
[31]. Consequently, we can check for negative curvature of
the entire augmented system by first picking δw such that
Inertia(Kp) = {np,mp, 0} for all p ∈ P and then solving
the Schur system (II.19a) using a Cholesky factorization or
PCG approach and checking whether the matrix is positive
definite; if it is not, then we increase δw and try again.

The Schur decomposition approach (II.19) is the basic
paradigm behind any parallel implementation. In the most
basic setting the idea is to factorize each block Kp indepen-
dently in a given computing node and form the contributions
BpK

−1
p BTp . The contributions are then communicated to a

coordinator node to form the Schur complement S, and we
solve the Schur system (II.19a) to obtain the step for the
coupling variables ∆w0. We then communicate ∆w0 to the
partition nodes and use (II.19b) to obtain the steps for the
partitions ∆wp in parallel.

The basic Schur setting has two key bottlenecks. First,
forming the contributions BpK−1p BTp can be expensive when
we have many columns in BTp (number of columns is
n0 + m0). Second, factorizing the Schur matrix S can be
challenging when n0 + m0 is large because this matrix is
dense or is composed of dense sub-blocks.

In the special case when m0 = 0, we can circumvent these
issues by using a PCG procedure to solve the Schur system

(II.19a). This approach requires only a product of the form
S · v for a given vector v at each PCG iteration, and this
can be obtained from products of the form BpK

−1
p BTp · v.

Consequently, the contribution matrices BpK−1p BTp do not
need to be formed explicitly. To precondition the PCG
procedure, one can use an incomplete Cholesky factorization
or an automatic BFGS preconditioner. The BFGS approach
is particularly attractive because no factorizations are needed
and it has been shown to dramatically reduce computing
times over the basic Schur setting [31].

When m0 > 0, we can still use a general iterative solver
such as GMRES or QMR to solve the Schur system (II.19a).
Obtaining a fast preconditioner, however, is nontrivial in this
case because the Schur complement has no obvious structure
and is indefinite. We can circumvent the Schur bottlenecks
using direct factorization routines. We can form the products
BpK

−1
p BTp indirectly by computing a symmetric indefinite

factorization of the sparse indefinite matrix:[
Kp BTp
Bp

]
. (II.21)

This approach has been shown to decrease times by an
order of magnitude [41]. One can then use a parallel dense
factorization (such as those implemented in ELEMENTAL
or MAGMA) to factorize the Schur complement S [37].

Another approach has been recently proposed in the con-
text of stochastic programming to circumvent the bottlenecks
of the basic Schur setting. The idea is to cluster scenarios to
form a sparse compressed representation of the BBD system
(II.17). This compression is used to compute a step for the
coupling variables ∆w0, and then the partition steps are
recovered from (II.19b) in parallel. This approach has shown
significant reductions in computational time for problems in
which n0 +m0 is large [11].

The primal coupling structure can be induced recursively.
Consider that each partition p ∈ P is partitioned into Pp
partitions with associated sets Pp, p ∈ P . This approach
creates the variable partitions xp = (xp,0, xp,1, ..., xp,Pp

),
p ∈ P and splits the objective and constraints as follows:

fp(x0, xp)=fp,0(x0, xp,0)+
∑
j∈Pp

fp,j(x0, xp,0, xp,j), p ∈ P

(II.22a)

cp(x0, xp)=

{
cp,0(x0, xp,0) p ∈ P
cp,j(x0, xp,0, xp,j), j ∈ Pp, p ∈ P.

(II.22b)

We thus obtain an NLP of the following form:

min

f0(x0) +
∑
p∈P

fp,0(x0, xp,0) +
∑
j∈Pp

fp,j(x0, xp,0, xp,j)

(II.23a)

s.t. c0(x0) = 0 (λ0) (II.23b)
cp,0(x0, xp,0) = 0, p ∈ P (λp,0) (II.23c)

cp,j(x0, xp,0, xp,j) = 0, j ∈ Pp, p ∈ P (λp,j) (II.23d)
x0 ≥ 0 (ν0) (II.23e)
xp,0 ≥ 0, p ∈ P (νp,0) (II.23f)
xp,j ≥ 0, j ∈ Pp, p ∈ P (νp,j) (II.23g)

One can show that the nested problem yields an augmented
system of the form (II.17) in which each diagonal block Kp

has a BBD structure of the form

Kp =

Kp,0 BTp,1 BTp,2 . . . BTp,Pp

Bp,1 Kp,1

Bp,2 Kp,2

...
. . .

Bp,Pp Kp,Pp

 , p ∈ P.

(II.24)

This low-level system can also be solved by using a Schur
decomposition approach. It is not difficult to see that we
can infer the inertia of the augmented system of (II.23)
recursively.

The recursive structure can naturally arise in applications,
but it can also be induced as a way to trade off dimen-
sionality of block partitions and of the Schur complement.
For instance, consider an optimal control problem with nx
state variables and N time steps, and assume that each time
step gives a block of dimension np. If we introduce many
partitions (say P = N) each partition will be small (of
dimension np) but the size of the Schur matrix will be large
(nx · P) and perhaps unmanageable. Now assume that we
partition the horizon into P = N/2 partitions in the first
level, and then we now have that the Schur complement in
the first level has a smaller dimension of nx ·N/2 but each
block partition has a larger dimension of np ·N/2. Each first-
level block partition, however, can be split in further (say into
N/2) partitions. Consequently, in the second level we have
that each block is of dimension np and the second-level Schur
complement is of dimension nx ·N/2. We have thus split the
complexity of the Schur complement. We note, however, that
this two-level approach is not perfectly parallelizable. This
is because the computations of the first-level cannot proceed
until those of the second-level are completed.

B. Dual Coupling

Another important structure arising in applications is:

min
∑
p∈P

fp(xp) (II.25a)

s.t. cp(xp) = 0, p ∈ P (λp) (II.25b)
xp ≥ 0, p ∈ P (νp) (II.25c)∑

p∈P
Πp xp = 0 (λ0) (II.25d)

We refer to this NLP as a structured problem with dual
coupling. Here, λ0 ∈ <m0 are the multipliers of the coupling
constraints, and Πp ∈ <m0×np are the coupling matrices.

This structure also arises in multi-stage optimal control
formulations; but, as opposed to the primal coupling case, the
state transition constraints define the coupling. A similar ob-
servation applies to decomposition over networks [38]. One
can also reformulate stochastic programming problems in this
form by using the so-called nonanticipativity constraints [7].

The augmented system of this problem can also be per-
muted into the BBD form (II.17) by defining ∆w0 = ∆λ0,
∆wp = (∆xp,∆λp),

K0 = −δcIm0
, Kp =

[
Wp(δw) JTp
Jp −δcI

]
BTp = [Πp 0] , (II.26)

Jp = ∇xpcp(xp), and Wp(δw) = ∇xp,xpL+X−1p Vp + δwI.
If we solve the BBD system using a Schur decomposition,
we obtain

−

δcIm0 +
∑
p∈P

BpK
−1
p BTp

∆w0 = −r0 +
∑
p∈P

K−1p Bprp.

(II.27)

The coefficient matrix of this system is a regularized version
of the dual Hessian used in dual-Newton decomposition
methods [32].

C. Primal-Dual Coupling
Similar to the case of primal coupling, the dual coupling

structure can be inherited recursively. Consider, for instance,
the following problem:

min
∑
p∈P

∑
j∈Pp

fp,j(xp,j) (II.28a)

s.t. cp,j(xp,j) = 0, p ∈ P, j ∈ Pp (λp,j) (II.28b)
xp,j ≥ 0, p ∈ P, j ∈ Pp (νp,j) (II.28c)∑

j∈Pp

Πp,j xp,j = 0 (λ0,j) (II.28d)

∑
p∈P

Πp xp = 0 (λ0) (II.28e)

Here, xp := (xp,1, ..., xp,Pp
) is the connection of variables

in partition p ∈ P . One immediately realizes that primal and
dual structures can also be superimposed to create a rich set
of structures. For instance, consider the problem with primal-
dual coupling:

min f0(x0) +
∑
p∈P

∑
j∈Pp

fp,j(xp,j , x0) (II.29a)

s.t. c0(x0) = 0 (λ0) (II.29b)
cp,j(xp,j , x0) = 0, p ∈ P, j ∈ Pp (λp,j) (II.29c)

x0 ≥ 0 (ν0) (II.29d)
xp,j ≥ 0, p ∈ P, j ∈ Pp (λp,j) (II.29e)∑

j∈Pp

Πp,j xp,j = 0, p ∈ P. (λ0,p) (II.29f)

These recursive structures can be exploited by solvers such
as PIPS-NLP. One can use these constructs to consider, for
insatnce, space-time partitioning of optimal control problems
over networks [17].

III. HIGH-PERFORMANCE COMPUTING PLATFORMS

Successful implementation of the ideas discussed in Sec-
tion II requires consideration of the strengths and limitations
of the particular parallel computing architecture targeted.
Parallel architectures are typically classified according to
Flynn’s taxonomy, where a key differentiator is whether
the architecture can perform different instructions simulta-
neously.

At one extreme, single-instruction-multiple-data (SIMD)
architectures can perform parallel computations; however,
each core must be executing the same fundamental in-
struction simultaneously (albeit on different data). These
SIMD architectures are highly appropriate for iterative linear
algebra [12] (e.g., PCG, GMRES), but their limitations make
it difficult to exploit these architectures for general structural
decomposition. Furthermore, while these architectures pro-
vide massive parallelism at a relatively low price (e.g. the
Tesla K80 provides almost 5,000 cores for a few thousand
dollars), they are most effective when the algorithm can be
implemented by using a large number of threads to keep the
cores loaded (e.g., while waiting for memory operations to
complete). Doing so may be difficult in structural decomposi-
tion of many large-scale problems. Graphics processing units,
commonly used for parallel scientific computing, are a hybrid
of the pure SIMD architecture. They comprise a number
of multiprocessors, each containing a number of streaming
processors or cores. The cores within a single multiprocessor
share instructions (i.e. they are true SIMD); and although
each multiprocessor can support execution of different ker-
nels, these architectures still do not support parallel execution
of different instructions at the same granularity as the number
of processing cores. Thus, efficient utilization of these hybrid
architectures demands the same considerations as do pure
SIMD architectures.

Multiple-instruction-multiple-data (MIMD) architectures
are more typically utilized for problems like those described
in this paper. These architectures have the disadvantage of
fewer cores than currently available SIMD architectures (at
least for the equivalent cost) but have the advantage that
each core is more capable. Most notably, MIMD architectures
can execute different instructions simultaneously. Within this
class, we consider shared-memory and distributed-memory
architectures. With shared-memory architectures, all cores
have access to the same physical memory. With this archi-
tecture, communicating or sharing data between processes
can be very fast. However, one bottleneck that can arise is
the total bandwidth available for accessing memory. Shared-
memory MIMD architectures include common consumer-
grade multi-core computers, and a typical shared-memory
MIMD architecture has access to far fewer cores than is
possible with current distributed-memory machines.

Distributed-memory MIMD architectures can be scaled to
significantly larger numbers of cores. In distributed-memory
architectures, individual machines are connected with one an-
other through standard or specialized networking interfaces,
and communication between processes occurs across this

network. For many algorithms, intercommunication becomes
the bottleneck that can deteriorate parallel efficiency as the
number of cores for a particular problem increases. Each
machine has its own dedicated access to local memory,
and these architectures are highly efficient for problems
with a high percentage of independent computation and less
intensive communication needs. Beowulf clusters are one
implementation for distributed-memory parallel computing,
and access to computing resources like these is common
for industrial and academic researchers. Modern clusters are
hybrid architectures, typically composed of a large number
of shared-memory, multicore machines (nodes) with fast
network access for communication between nodes.

The software tools available for developing parallel al-
gorithms depend on the architecture targeted. Distributed-
memory and shared-memory MIMD architectures benefit
from the availability of a wide range of compiler tools.
For shared-memory machines, parallelism can be handled
any number of ways, including the direct use of threads or
APIs such as OpenMP. For distributed-memory machines,
the most widely used paradigm for algorithms discussed here
is the Message Passing Interface (MPI), and several imple-
mentations exist for different architectures. MPI can also be
used in shared-memory environments, but care must be taken
to ensure competitive performance with dedicated shared-
memory tools. For SIMD architectures, the software tool
used for development of parallel algorithms is often hardware
specific. For example, NVidia has released the Tesla series of
graphics processing units for scientific computing along with
the platform-specific CUDA API and compiler extensions.
While work has been done on general parallel tools for use on
different architectures (e.g. OpenCL), these cannot compete
with the performance of dedicated tools.

IV. SOFTWARE AND IMPLEMENTATION

Parallel strategies for NLP problems based on problem par-
titioning or decomposition can be used at the problem level
or the linear algebra level. We focus on those strategies that
achieve parallel speedup by exploiting problem structure and
decomposing the internal linear algebra operations performed
by the NLP algorithm. While significant work has been done
on parallel algorithms for simulation and optimization of
partial differential equations with notable codes PETSc [4–6]
and Trillinos [27], we restrict our discussion to the problem
structures described in Section II.

The dominant computational cost for the interior-point
methods described in this paper is the solution of an aug-
mented system like that in (I.4). Two broad strategies can be
used for parallel solution of the augmented system: interface
the NLP code with an existing, off-the-shelf parallel linear
solver, or write a parallel decomposition approach specifi-
cally tailored to the structure of the problem. Several general
parallel linear solvers exist, including shared-memory paral-
lel solvers such as PARDISO [33, 44–46] and MA86/MA97
[28] and shared/distributed-memory solvers such as MUMPS
[2, 3], WSMP [25], and Elemental [42]. Many of these
solvers have been used with nonlinear interior-point methods,

and IPOPT has existing interfaces to MA86, MA97, MUMPS,
PARDISO, and WSMP.

While ease of implementation is a major benefit of using
an existing parallel linear solver in one’s NLP code, truly
scalable performance to hundreds of processors typically
requires using a decomposition specifically tailored to the
structure of the problem. Amdahl’s law provides an estimate
of the maximum achievable speedup as the inverse of the
fraction of the algorithm that must be executed serially
(S∞=1/φs) [1]. Therefore, in order to achieve significant
speedup on large computing clusters, scale-dependent oper-
ations must be serialized. These include model evaluations
(which can be parallelized at a block level), and all vector,
vector-vector, and matrix-vector operations. For the block
structures described in this paper, parallel evaluation of the
scale-dependent operations is relatively straightforward for
all but the solution of the linear system used to compute the
step. Utilizing the techniques outlined in Section II, parallel
decomposition algorithms can be implemented to exploit the
specialized block structure in the linear system. At the core
of this decomposition approach, the implementation makes
parallel calls to separate instances of a serial linear solver for
individual blocks (which themselves have the same structure
as (I.4)). MA27 and MA57 from the Harwell Subroutine
Library [28] have been widely used in serial nonlinear
interior-point algorithms and for block decomposition in
parallel interior-point methods [14, 31, 49, 50]. Of course,
many of the parallel linear solvers discussed above perform
well in serial, and can be used in this context as well.

Several nonlinear interior-point algorithms have been
developed based on structural decomposition of the lin-
ear algebra, including OOPS[20, 21], PIPS-NLP[14, 36],
PRBLOCK IP[13] and Schur-IPOPT [31, 50]. In Castro
[13] structured, convex QP problems with constraint cou-
pling are solved through a method that performs Cholesky
factorizations on the diagonal blocks and a PCG method
for the linking constraints. An explicit Schur-complement
approach based on the IPOPT algorithm is implemented
in [50]. This algorithm is appropriate for problems with
mild primal coupling; however, the performance deteriorates
significantly as the number of coupling variables increases.
This is due to the explicit formation of the Schur complement
through repeated backsolves and the direct factorization of
the dense Schur complement. This work is extended by Kang
et al. [31], using a PCG approach on the implicit equation
for the Schur complement. This approach avoids the need
to form and factorize the Schur complement, however, it is
not appropriate for all the structures explored in this paper.
The PIPS and PIPS-NLP codes implement a number of
improvements over standard algorithms, including the use
of factorizations of (II.21) in place of repeated backsolves
with columns from BTp [41], support for recursive block
structures, parallel dense factorization of the Schur comple-
ment [37], and iterative methods on the Schur complement
[40]. Another recent code, IPCLUSTER [11], implements an
interior-point method for stochastic programming problems
that improves the computational time by constructing a

sparse, compressed representation of the structured KKT
system to compute the step in the coupling variables.

While parallel computing architectures are becoming ubiq-
uitous, a major barrier to the widespread adoption of parallel
NLP codes has been the lack of appropriate modeling lan-
guages. While many modeling languages exist, the parallel
implementations described above have unique requirements.
For efficient scale-up to many processors, the model must be
evaluated in parallel, and few languages support this directly.

Furthermore, for many large-scale problems, construction
of the entire model on a serial machine is not possible
because of memory and time limitations. Therefore, these
languages must support parallel instantiation of partial mod-
els along with appropriate metadata to describe this structure
to the solver. For many problems, the modeler is aware of the
structure and can provide guidance on the construction and
labeling. Several languages support suffixes as a mechanism
for assigning metadata to variables and constraints, including
AMPL [18]. This mechanism was used in [50] and [31]
to describe coupling where each block in the problem was
coded as a separate AMPL model and several instances of the
AMPL Solver Library (ASL) were used to support parallel
evaluation of the NLP residuals and gradients. Recent work
has sought to simplify this effort through the development
of modeling languages that provide native support for inter-
facing with parallel solvers.

Pyomo [26] is a python-based open-source algebraic mod-
eling language that supports the definition and solution of
optimization applications using the Python scripting lan-
guage. It is portable and can be used on most platforms.
Pyomo supports the general concept of model blocks and
allows for custom modeling extensions. The PySP frame-
work (based on Pyomo) provides a high-level interface
for parallel instantiation and evaluation of block-structured
stochastic programming problems, including interfaces to
parallel decomposition algorithms. The structure-conveying
modeling language (SML) proposed by [15] provides an
extension to the AMPL modeling language to support the
concept of blocks. A model generation package has been
developed for SML that supports parallel instantiation of
models described by the block structure in SML [24]. Based
on the Julia programming language, JuMP [35] provides
a mathematical programming modeling language that has
compilation and execution speeds similar to those of AMPL,
while retaining much of the flexibility of traditional scripting
languages. StochJuMP [30] provides an extension to JuMP
to support parallel model construction and evaluation for
stochastic programming problems. These new developments
in modeling languages open the door for mainstream use of
specialized parallel solvers.

V. EXTERNAL DECOMPOSITION

In this section we discuss strategies for external problem
decomposition. Most of these strategies do not have con-
vergence guarantees in nonconvex settings but can be often
used as a heuristic. Moreover, the convergence of external
decomposition strategies can be slow, but these strategies

are easier to implement. In this section we consider the NLP
with dual coupling (II.25), and we assume that the bounds
are handled by using a logarithmic barrier function.

A. Dual Decomposition

In this setting we seek to maximize the Lagrangian dual
function

D(λ0) = min
wp

∑
p∈P

(
ϕ(xp) + λTp cp(xp) + λT0 Πpxp

)
,

(V.30)

where wp := (xp, λp) and we denote the solution at fixed
λ0 as wp(λ0). Because the dual function is separable, each
partition p ∈ P can be solved in parallel when the duals λ0
are fixed. In a first-order method, we update the duals λ0 as

λ+0 = λ0 +∇λ0
D(λ0), (V.31)

where

∇λ0
D(λ0) =

∑
p∈P

Πpxp (V.32)

is the gradient of D(λ0). The dual update takes place in a
coupling node. The first-order dual decomposition method
is easy to implement and requires minimal communication
between the partitions and the coupling node (only Πpxp
and λ0 need to be communicated). The convergence rate,
however, is only linear (this method is essentially a steepest
descent method).

In a second-order method (dual-Newton) we update the
duals in the coordinator node as,

λ+0 = λ0 −∇2
λ0
D(λ0)−1∇λ0D(λ0), (V.33)

where ∇2
λ0
D(λ0) is the Hessian of the dual function. One

can show that this dual Hessian matrix has the following
structure:

∇2
λ0
D(λ0) = −

∑
p∈P

BpK
−1
p BTp , (V.34)

where Kp is defined in (II.26) and is evaluated at wp(λ0)
with δw = 0. The dual-Newton method has superlinear con-
vergence and the dual update (V.33) can be implemented by
using a CG method as is done in [32]. With this, it is possible
to limit communication between the partition nodes and the
coupling node (only vectors need to be communicated). One
can also use automatic BFGS preconditioning to accelerate
the CG method as proposed in [31]. Alternatively, one can
approximate the dual Hessian matrix using a BFGS approach.

B. ADMM

The alternating direction method of multipliers (ADMM)
uses the augmented Lagrangian function:

LA(w1, w2, ..., wP , λ0)

:=
∑
p∈P

(
ϕ(xp) + λTp cp(xp) + λT0 Πpxp

)
+
ρ

2

∥∥∥∥∥∥
∑
p∈P

Πpxp

∥∥∥∥∥∥
2

.

(V.35)

We then apply a Gauss-Seidel scheme of the form

wk+1
1 = argminw1

LA(w1, w
k
2 , ..., w

k
P , λ

k
0)

wk+1
2 = argminw2

LA(wk+1
1 , w2, ..., w

k
P , λ

k
0)

...

wk+1
P = argminwP

LA(wk+1
1 , wk+1

2 , ..., wP , λ
k
0)

λk+1
0 = λk0 + ρ

∑
p∈P

Πpx
k+1
p .

The key observation is that each subproblem in this scheme
is separable, and consequently the partitions can be computed
independently. The last step is performed in a coupling node.
The communication between partition nodes, however, is not
necessarily trivial. In particular, each partition p needs to
obtain the components Πp′xp′ from all partitions p′ 6= p.
Note also that the ADMM approach is tightly connected
to the dual decomposition approach with first-order dual
updates (V.31). The key difference between the approaches
is that the augmented Lagrangian regularization term couples
the subproblems and thus the augmented Lagrangian is no
longer separable for fixed multipliers λ0. This forces the
use of a Gauss-Seidel scheme to enable decomposition. This
makes the convergence rate of ADMM linear. The ADMM
approach has been used for stochastic programs in [43] and
in a more general setting in [8].

VI. SUMMARY AND CHALLENGES

Interior-point methods have emerged as an efficient plat-
form for parallel solution of structured nonlinear program-
ming problems, oweing largely to the fact that the linear
system solved to find the step direction retains consistent
structure over all iterations. Algorithms have been developed
that provide parallel decomposition of the linear algebra
for block-bordered problems with primal coupling and dual
coupling, as well as combined and recursive structures. These
methods have also been shown to provide effective parallel
solution of spatially and temporally discretized problems. At
this point, the most successful implementations are based on
parallel MIMD architectures (clusters), and high-level model-
ing languages are being developed and interfaced with these
algorithms, providing support for parallel model construction
and evaluation in a more user friendly environment.

Nevertheless, several research opportunities and challenges
remain in this area.

• These methods have seen little use outside the expert
research community. Improvements are still necessary
in modeling languages and implementation details such
as ease of installation on high-performance computing
software.

• Emerging architectures like the GPU provide potential
for massively parallel computions at relatively low cost.
However, the SIMD nature of these architectures makes
it significantly more challenging to implement effective
parallel algorithms. More research is necessary to deter-
mine effective ways of utilizing these architectures for

parallel solution of general and block-structured NLP
problems.

• Iterative linear solvers provide a natural framework for
parallel algorithms, and they are highly appropriate for
SIMD architectures. While there has been significant
work on the use of iterative methods for the augmented
system, for problems of general structure (or general
structure within blocks), effective preconditioners are
difficult to find. These methods have not been as
successful as direct factorization methods based on
block decomposition, and more research in this area is
required.

• The majority of research in this area has focused on
block-bordered diagonal structures like those arising
with primal and dual coupling. More research is nec-
essary for other common structures, including those
arising from time-discretized systems and network-
structured problems.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy, Office of science, under Contract No.
DE-AC02-06CH11357. Thanks is also extended for partial
financial support provided to Carl Laird by the National
Science Foundation (CAREER Grant CBET# 0955205).

REFERENCES

[1] Gene M Amdahl. Validity of the single processor ap-
proach to achieving large scale computing capabilities.
In Proceedings of the April 18-20, 1967, spring joint
computer conference, pages 483–485. ACM, 1967.

[2] Patrick R Amestoy, Iain S Duff, and J-Y L’Excellent.
Multifrontal parallel distributed symmetric and unsym-
metric solvers. Computer methods in applied mechanics
and engineering, 184(2):501–520, 2000.

[3] Patrick R Amestoy, Iain S Duff, Jean-Yves LExcellent,
and Jacko Koster. Mumps: a general purpose distributed
memory sparse solver. In Applied Parallel Computing.
New Paradigms for HPC in Industry and Academia,
pages 121–130. Springer, 2001.

[4] Satish Balay, William D. Gropp, Lois Curfman
McInnes, and Barry F. Smith. Efficient management
of parallelism in object oriented numerical software
libraries. In E. Arge, A. M. Bruaset, and H. P. Lang-
tangen, editors, Modern Software Tools in Scientific
Computing, pages 163–202. Birkhäuser Press, 1997.

[5] Satish Balay, Shrirang Abhyankar, Mark F. Adams,
Jed Brown, Peter Brune, Kris Buschelman, Lisandro
Dalcin, Victor Eijkhout, William D. Gropp, Dinesh
Kaushik, Matthew G. Knepley, Lois Curfman McInnes,
Karl Rupp, Barry F. Smith, Stefano Zampini, and Hong
Zhang. PETSc Web page. http://www.mcs.anl.gov/
petsc, 2014. URL http://www.mcs.anl.gov/petsc.

[6] Satish Balay, Shrirang Abhyankar, Mark F. Adams,
Jed Brown, Peter Brune, Kris Buschelman, Lisandro
Dalcin, Victor Eijkhout, William D. Gropp, Dinesh
Kaushik, Matthew G. Knepley, Lois Curfman McInnes,

Karl Rupp, Barry F. Smith, Stefano Zampini, and Hong
Zhang. PETSc users manual. Technical Report ANL-
95/11 - Revision 3.6, Argonne National Laboratory,
2015. URL http://www.mcs.anl.gov/petsc.

[7] John R Birge and Francois Louveaux. Introduction to
stochastic programming. Springer Science & Business
Media, 2011.

[8] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato,
and Jonathan Eckstein. Distributed optimization and
statistical learning via the alternating direction method
of multipliers. Foundations and Trends R© in Machine
Learning, 3(1):1–122, 2011.

[9] Richard H Byrd, Jorge Nocedal, and Richard A Waltz.
Knitro: An integrated package for nonlinear optimiza-
tion. In Large-scale nonlinear optimization, pages 35–
59. Springer, 2006.

[10] Giuseppe C Calafiore and Lorenzo Fagiano. Stochastic
model predictive control of lpv systems via scenario
optimization. Automatica, 49(6):1861–1866, 2013.

[11] Yankai Cao, Carl D Laird, and Victor M Zavala.
Clustering-based preconditioning for stochastic pro-
grams. submitted to Computational Optimization and
Applications, 2015.

[12] Yankai Cao, Arpan Seth, and Carl D Laird. A parallel
augmented lagrangian interior-point approach for large-
scale nlp problems on graphics processing units. sub-
mitted to Computers and Chemical Engineering, 2015.

[13] Jordi Castro. An interior-point approach for primal
block-angular problems. Computational Optimization
and Applications, 36(2-3):195219, 2007. doi: 10.1007/
s10589-006-9000-1.

[14] Naiyuan Chiang, Cosmin G Petra, and Victor M Zavala.
Structured nonconvex optimization of large-scale en-
ergy systems using pips-nlp. In Proc. of the 18th Power
Systems Computation Conference (PSCC), Wroclaw,
Poland, 2014.

[15] Marco Colombo, Andreas Grothey, Jonathan Hogg,
Kristian Woodsend, and Jacek Gondzio. A structure-
conveying modelling language for mathematical and
stochastic programming. Mathematical Programming
Computation, 1(4):223–247, 2009.

[16] Frank E Curtis, Olaf Schenk, and Andreas Wächter. An
interior-point algorithm for large-scale nonlinear opti-
mization with inexact step computations. SIAM Journal
on Scientific Computing, 32(6):3447–3475, 2010.

[17] Klaus Ehrhardt and Marc C Steinbach. Nonlinear
optimization in gas networks. Springer, 2005.

[18] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL:
A Modeling Language for Mathematical Programming.
The Scientific Press (now an imprint of Boyd & Fraser
Publishing Co.), Danvers, MA, USA, 1993. ISBN 0-
89426-232-7.

[19] Michael P Friedlander and Dominique Orban. A
primal–dual regularized interior-point method for con-
vex quadratic programs. Mathematical Programming
Computation, 4(1):71–107, 2012.

[20] Jacek Gondzio and Andreas Grothey. Parallel interior-

point solver for structured quadratic programs: Ap-
plication to financial planning problems. Annals of
Operations Research, 152(1):319–339, 2007.

[21] Jacek Gondzio and Andreas Grothey. Exploiting struc-
ture in parallel implementation of interior point methods
for optimization. Computational Management Science,
6(2):135–160, 2009.

[22] Jacek Gondzio and Robert Sarkissian. Parallel interior-
point solver for structured linear programs. Mathemat-
ical Programming, 96(3):561–584, 2003.

[23] Nicholas IM Gould. On practical conditions for the
existence and uniqueness of solutions to the general
equality quadratic programming problem. Mathemati-
cal Programming, 32(1):90–99, 1985.

[24] Andreas Grothey and Feng Qiang. Psmg: A parallel
problem generator for structure conveying modelling
language for mathematical programming. presentation
at ICCOPT, 2009, 2013.

[25] Anshul Gupta. Wsmp: Watson sparse matrix package
(part-i: direct solution of symmetric sparse systems).
IBM TJ Watson Research Center, Yorktown Heights, NY,
Tech. Rep. RC, 21886, 2000.

[26] William E Hart, Jean-Paul Watson, and David L
Woodruff. Pyomo: modeling and solving mathemati-
cal programs in python. Mathematical Programming
Computation, 3(3):219–260, 2011.

[27] Michael A Heroux, Roscoe A Bartlett, Vicki E Howle,
Robert J Hoekstra, Jonathan J Hu, Tamara G Kolda,
Richard B Lehoucq, Kevin R Long, Roger P Pawlowski,
Eric T Phipps, et al. An overview of the trilinos project.
ACM Transactions on Mathematical Software (TOMS),
31(3):397–423, 2005.

[28] HSL. A collection of Fortran codes for large scale
scientific computation. http://www.hsl.rl.ac.uk, 2011.

[29] Rui Huang and Lorenz T Biegler. Robust nonlinear
model predictive controller design based on multi-
scenario formulation. In Proc. of the American Control
Conference, pages 2341–2342, 2009.

[30] Joey Huchette, Miles Lubin, and Cosmin Petra. Parallel
algebraic modeling for stochastic optimization. In
Proceedings of the 1st First Workshop for High Per-
formance Technical Computing in Dynamic Languages,
pages 29–35. IEEE Press, 2014.

[31] Jia Kang, Yankai Cao, Daniel P Word, and CD Laird.
An interior-point method for efficient solution of
block-structured nlp problems using an implicit schur-
complement decomposition. Computers & Chemical
Engineering, 71:563–573, 2014.

[32] Attila Kozma, Emil Klintberg, Sebastien Gros, and
Moritz Diehl. An improved distributed dual Newton-
CG method for convex quadratic programming prob-
lems. In American Control Conference (ACC), 2014,
pages 2324–2329. IEEE, 2014.

[33] A. Kuzmin, M. Luisier, and O. Schenk. Fast meth-
ods for computing selected elements of the greens
function in massively parallel nanoelectronic device
simulations. In F. Wolf, B. Mohr, and D. Mey, editors,

Euro-Par 2013 Parallel Processing, volume 8097 of
Lecture Notes in Computer Science, pages 533–544.
Springer Berlin Heidelberg, 2013. ISBN 978-3-642-
40046-9. doi: 10.1007/978-3-642-40047-6 54. URL
http://dx.doi.org/10.1007/978-3-642-40047-6 54.

[34] Carl D Laird and Lorenz T Biegler. Large-scale
nonlinear programming for multi-scenario optimization.
In Modeling, simulation and optimization of complex
processes, pages 323–336. Springer, 2008.

[35] Miles Lubin and Iain Dunning. Computing in op-
erations research using julia. INFORMS Journal on
Computing, 27(2):238–248, 2015.

[36] Miles Lubin, Cosmin G Petra, Mihai Anitescu, and
Victor Zavala. Scalable stochastic optimization of
complex energy systems. In High Performance Com-
puting, Networking, Storage and Analysis (SC), 2011
International Conference for, pages 1–10. IEEE, 2011.

[37] Miles Lubin, Cosmin G Petra, and Mihai Anitescu. The
parallel solution of dense saddle-point linear systems
arising in stochastic programming. Optimization Meth-
ods and Software, 27(4-5):845–864, 2012.

[38] Ion Necoara, Carlo Savorgnan, Dinh Quoc Tran, Johan
Suykens, and Moritz Diehl. Distributed nonlinear
optimal control using sequential convex programming
and smoothing techniques. In Decision and Control,
2009 held jointly with the 2009 28th Chinese Control
Conference. CDC/CCC 2009. Proceedings of the 48th
IEEE Conference on, pages 543–548. IEEE, 2009.

[39] Jorge Nocedal and Stephen Wright. Numerical opti-
mization. Springer Science & Business Media, 2006.

[40] C. G. Petra and M. Anitescu. A preconditioning
technique for schur complement systems arising in
stochastic optimization. Computational Optimization
and Applications, 52:315–344, June 2012.

[41] Cosmin G Petra, Olaf Schenk, Miles Lubin, and Klaus
GŁertner. An augmented incomplete factorization ap-
proach for computing the schur complement in stochas-
tic optimization. SIAM Journal on Scientific Computing,
36(2):C139–C162, 2014.

[42] Jack Poulson, Bryan Marker, Robert A Van de Geijn,
Jeff R Hammond, and Nichols A Romero. Elemental:
A new framework for distributed memory dense matrix
computations. ACM Transactions on Mathematical
Software (TOMS), 39(2):13, 2013.

[43] Charles H Rosa and Andrzej Ruszczyński. On aug-
mented lagrangian decomposition methods for mul-
tistage stochastic programs. Annals of Operations
Research, 64(1):289–309, 1996.

[44] Olaf Schenk, Andreas Wchter, and Michael Hagemann.
Matching-based preprocessing algorithms to the solu-
tion of saddle-point problems in large-scale nonconvex
interior-point optimization. Computational Optimiza-
tion and Applications, 36(2-3):321–341, 2007. ISSN
0926-6003. doi: 10.1007/s10589-006-9003-y. URL
http://dx.doi.org/10.1007/s10589-006-9003-y.

[45] Olaf Schenk, Matthias Bollhöfer, and Rudolf A. Römer.
On large-scale diagonalization techniques for the an-

derson model of localization. SIAM Rev., 50(1):91–
112, February 2008. ISSN 0036-1445. doi: 10.1137/
070707002. URL http://dx.doi.org/10.1137/070707002.

[46] Olaf Schenk, Andreas Wächter, and Martin Weiser.
Inertia-revealing preconditioning for large-scale non-
convex constrained optimization. SIAM Journal on
Scientific Computing, 31(2):939–960, 2008.

[47] Andreas Wächter and Lorenz T Biegler. On the im-
plementation of an interior-point filter line-search algo-
rithm for large-scale nonlinear programming. Mathe-
matical programming, 106(1):25–57, 2006.

[48] Daniel P Word, Derek AT Cummings, Donald S Burke,
Sopon Iamsirithaworn, and Carl D Laird. A nonlinear
programming approach for estimation of transmission

parameters in childhood infectious disease using a
continuous time model. Journal of The Royal Society
Interface, 9(73):1983–1997, 2012.

[49] Daniel P Word, Jia Kang, Johan Akesson, and Carl D
Laird. Efficient parallel solution of large-scale non-
linear dynamic optimization problems. Computational
Optimization and Applications, 59(3):667–688, 2014.

[50] Victor M Zavala, Carl D Laird, and Lorenz T Biegler.
Interior-point decomposition approaches for parallel
solution of large-scale nonlinear parameter estimation
problems. Chemical Engineering Science, 63(19):
4834–4845, 2008.

jbullock
Typewritten Text
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

